Emitters of N-photon bundles
نویسندگان
چکیده
Controlling the ouput of a light emitter is one of the basic tasks of photonics, with landmarks such as the laser and single-photon sources. The development of quantum applications makes it increasingly important to diversify the available quantum sources. Here, we propose a cavity QED scheme to realize emitters that release their energy in groups, or "bundles" of N photons, for integer N. Close to 100% of two-photon emission and 90% of three-photon emission is shown to be within reach of state of the art samples. The emission can be tuned with system parameters so that the device behaves as a laser or as a N-photon gun. The theoretical formalism to characterize such emitters is developed, with the bundle statistics arising as an extension of the fundamental correlation functions of quantum optics. These emitters will be useful for quantum information processing and for medical applications.
منابع مشابه
Wiring up pre-characterized single-photon emitters by laser lithography
Future quantum optical chips will likely be hybrid in nature and include many single-photon emitters, waveguides, filters, as well as single-photon detectors. Here, we introduce a scalable optical localization-selection-lithography procedure for wiring up a large number of single-photon emitters via polymeric photonic wire bonds in three dimensions. First, we localize and characterize nitrogen ...
متن کاملCascaded two-photon nonlinearity in a one-dimensional waveguide with multiple two-level emitters
We propose and theoretically investigate a model to realize cascaded optical nonlinearity with few atoms and photons in one-dimension (1D). The optical nonlinearity in our system is mediated by resonant interactions of photons with two-level emitters, such as atoms or quantum dots in a 1D photonic waveguide. Multi-photon transmission in the waveguide is nonreciprocal when the emitters have diff...
متن کاملIndistinguishability and correlations of photons generated by quantum emitters undergoing spectral diffusion
Photon-based quantum information processing is based on manipulating multi photon interference. We focus on the Hong-Ou-Mandel (HOM) dip in the photon coincidence rate which provides a direct measure of interference of indistinguishable photons linked to their Bose statistics. The effect has been first observed with entangled photons generated by parametric down conversion and then extended to ...
متن کاملNonclassical light from a large number of independent single-photon emitters
Nonclassical quantum effects gradually reach domains of physics of large systems previously considered as purely classical. We derive a hierarchy of operational criteria suitable for a reliable detection of nonclassicality of light from an arbitrarily large ensemble of independent single-photon emitters. We show, that such large ensemble can always emit nonclassical light without any phase refe...
متن کاملPhoton Sorters and QND Detectors Using Single Photon Emitters
We discuss a new method for realizing number-resolving and non-demolition photo detectors by strong coupling of light to individual single photon emitters, which act as strong optical nonlinearities. As a specific application we show how these elements can be integrated into an error-proof Bell state analyzer, whose efficiency exceeds the best possible performance with linear optics even for a ...
متن کامل